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Abstract-The onset of Marangoni-Btnard instability under microgravity conditions is studied exper- 
imentally using a sounding rocket (TEXUS 21) launched in the microgravity program developed by the 
European Space Agency. Due to the short available time, the experiment is conducted under unsteady 
conditions, i.e. the temperature gradient inside the liquid phase is not constant. For such a non-linear 
temperature profile, we compare the experimental and the theoretical value of the critical non-oscillatory 
Marangoni number, This simple analysis provides an excellent agreement in contradistinction with earlier 

results obtained during Apollo 14 and 17 flights. 

1. INTRODUCTION 

PEARSON [l] reviewing the original Benard [2] exper- 
iments done in thin liquid layers heated from the rigid 
bottom side, pointed out that the onset of cellular 
convection was obtained outside of the theoretical 
frame put forward in Lord Rayleigh’s [3] classical 
article. There, convection will appear, once the effects 

of buoyancy due to liquid thermal expansion, over- 
come the dissipative effects of bulk viscosity and 
heat diffusivity. These experimental situations corres- 

ponded to cases where convective hexagonal Benard 

cells are observed, even if the buoyancy effects 
are small and remain ineffective. This was so since 
Marangoni stresses at the free interface are the leading 
cause behind those selected structures. For a constant 

temperature gradient, Nield [4] compared the relative 

effects of buoyancy and surface tension on the onset 

of instability. His theoretical model was substantiated 

by Harvey et ~1,‘s [5] experiments which enable us to 

compare with a rather good approximation various 
hypothetical situations to practical ones. 

One very important issue was then raised : how to 
describe the onset of convection due to surface effects 

whenever the temperature profile is far from a steady 
linear one. Vidal and Acrivos [6] considered already 
the problem in shallow evaporating pools of propyl 

alcohol. They proposed a way to find out the critical 
Marangoni number in the absence of buoyancy effects 
and compared their numerical value to the one which 
they deduced from an experiment on earth. Still, they 
recorded a discrepancy between theoretical and exper- 
imental results which they attributed to the use of the 
selected profile and to buoyancy. 

Experiments, with a concentration dependent 

Marangoni effect, were also performed during the 

Spacelab Dl mission, with a flat liquid-gas interface. 
Unhappily, no convective instability has been re- 
corded (cf. the experiment of Lichtenbelt et al. [7]). 

Thus, instability conditions for such cases require 
a careful study in a real microgravity environment, 
where one could compare the experimental and the 
theoretical values of the Marangoni number. Such 

experiments were already done during the Apollo pro- 
gram [8-111. Despite technical difficulties which had 
to be overcome and severe experimental drawbacks, 

it was shown beyond doubt that surface tension 
gradients alone are sufficient to induce convective 
motions. This was not experimentally proven before. 
The motion starts when the temperature drop inside 

the liquid layer exceeds a critical value. Also a poly- 

gonal cellular pattern is preferred to roll cells. 
But, despite these rewarding results, important 

items remained pretty obscure. The experimentally 

deduced Marangoni numbers were larger than the 

ones predicted from Pearson’s theoretical approach 
[ 11, whatever the thermal behaviour of the liquid-gas 
interface. The critical temperature difference increases 
when the depth of the fluid layer is increased. This 

behaviour was also observed by Koschmieder [ 121 
on thin layers heated from below, when the surface 
tension effects are dominant. Experimental results 

under microgravity conditions are thus far from being 
completely understood. Furthermore, a basic method- 
ological difficulty had to be overcome: one cannot 
take into account any more just Pearson’s model for 
the temperature profile. Indeed Pearson supposes the 
steady reference state to correspond to a constant 
temperature gradient across the liquid layer at rest. 
This can be experimentally so after a long time as was 
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I NOMENCLATURE 

B 
d 
k 
K 
Ma 
s 
T 

To, 

polynomial coefficient of the transient 

temperalure profile (i = 1. 2, 3) 

Biot number 
liquid depth 
heat conductivity 
thermal ditfusivity 
Marangoni number 
surface tension 
temperature 

free surface temperature 

AT temperature difference across the liquid 

layer. 

Greek symbols 
a wave number 

P dynamic viscosity 

5 adimensional length aiong z axis 

P density 
0 !emperature dependence of S. 

stated explicitly by Harvey et al. [5] who needed a 
certain number of hours to reach it. These conditions 
are excluded inside the 6 min provided by the ballistic 
path of a sounding rocket. 

The present paper reports a Marangoni-Benard 

experiment using the specific microgravity amenities 

of the TEXUS 21 sounding rocket flight performed in 
the frame of the microgravity program of ESA. Dur- 
ing the finite span of time available, we were only 
able to observe the transient behaviour of the heating 
process. Even though, we suppose in this first report, 
a quasi steady temperature profile, its spatial shape is 

strongly nonlinear and we develop a linear stability 
analysis to describe the marginal non-oscillating neu- 
tral state, neglecting for the time being, the free surface 
deformation. For that case, the numerical analysis 
gives the theoretical values of the critical Marangoni 
number and the Biot number which are favourably 
compared to their experimental values since they fall 
inside the experimental error interval. 

2. MATHEMATICAL FORMULATION 

Let us consider an infinite liquid layer bounded on 

the one side by a horizontal rigid wall at z = 0 and, 
on the other side by a horizontal free liquid-gas inter- 
face at z = d. The experimental constraints and pro- 
cedures that we have to follow inboard the rocket 
during this Spacelab precursor flight, exclude the 
necessary facilities to get the transition from a quiesc- 

ent conducting liquid to the convective Benard cells 
by departing, infinitely slowly from one linear tem- 
perature profile to another. 

But in the allotted time, the heating processing 
which we describe elsewhere [ 131, enables us to repre- 
sent our experimental data with a high degree of accu- 
racy by a quasi steady profile which shows a spatial 
dependency on the form of a cubic equation : 

T= T,,+a,(z-d)-az(z-d)-‘-a,(r-d)’ (I) 

where r,,, is the temperature at the free interface. The 
profile is frozen with respect to time (see Fig. 1). 
Obviously, this last hypothesis means that this equa- 
tion rests on a compromise. It might not be very 
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FIG. I. Schematic view of the experiment and an example of 
the temperature distribution in the liquid and gas phases. 

gratifying for other purposes. But, this empirical 
shape has kept the most important feature of the 
transient conducting profile, which we want to tackle 

with : namely its curvature is finite and changes con- 

tinuously with height (see Fig. 2). Since all our data 
derive only from microgravity, this constitutes a major 
difference with Vidal and Acrivos [6] who applied 
Currie’s [ 141 approach. 

Adopting equation (I) for a reference profile, we 

ToS+AT 

I -2 
0 d 

FIG. 2. Comparison between the temperature distribution in 
the liquid obtained from the numerical calculation (+) and 
a polynomial of the third degree corresponding to the onset 

of convection (continuous line). 
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study the linear stability of the corresponding thermo- 
capillary problem in the absence of gravity and deter- 
mine the onset of convection for an undeformable 
interface. The unperturbed profile does not obey 
Fourier’s equation but the fluctuations of temperature 
T’ do so. Thus, we follow stepwise the general linear 
perturbation scheme in the absence of buoyancy put 
forward by Pearson, adopting his nomenclature and 
adimensionalization wherever possible and referring 
the reader to his article for more details [I]. Let us 
stress that the temperature is scaled by the total tem- 
perature drop across the layer AT, given by 

AT = a,d-a2d2+a,d3. (2) 

To study the marginal stationary stability of infini- 
tesimal disturbances, one decomposes them into a 
Fourier integral expansion along the plane parallel to 
the non-deformed free surface. This standard pro- 
cedure algebrizes the whole problem with respect to 
the x/d and y/d variables. The whole mathematical 
difficulty becomes now the study of a time inde- 
pendent system of ordinary differential equations in 
the dimensionless variable l = z/d for only one single 
mode defined by ~1, the djmensionIess wave number. 

Along the undeformable liquid-gas surface, the 
tangential shear stress of the liquid layer is balanced 
by the longitudinal variation of the surface tension 
S which decreases linearly with temperature. This 
introduces a coupling between the heat and the 
momentum, both being taken along the free interface 

s = s,-OT (3) 

where the rate of heat loss per unit area obeys New- 
ton’s cooling law. This defines the heat of transfer 
coefficient q. It expresses the loss of heat into the 
gaseous adjacent phase (qdT’), to be equal to the heat 
flux coming from the liquid. This last is given by 
Fourier’s law-k(a7+‘/a<) and thus introduces the 
coefficient k of heat conduction in the liquid. 

At the rigid wall, there is no slip and we consider 
the limiting case of a heat conducting wall, thus 
T‘ = 0. This boundary condition corresponds to 
rather ad hoc situations and is actuaily an extension 
of the properties of the real device which we used in 
our microgravity experiment. 

We have now to solve the following system of 
coupled differential equations linking the velocity 
component f(t) of the normal mode and the tem- 
perature perturbation component g(c) of the normal 
mode : 

(D2--*)*f(<) = 0 (4) 

(D’-~“)s(<) =f[a:+2a:(5-1)~-3~:(5-1)‘] (5) 

where D = d/dt and 

* _ aid 
a, --. 

AT 

The boundary conditions related to our problem are 

f(0) =f’(O) = 0, f(1) = 0, f”(1) = CL2 Mug(l) 

MfJ= $$ g’(1) = -Bg(l) 

B = 5, g’(0) = 0. Ua-sl 

Equation (4) is deduced from the expansion of the 
Navier-Stokes equation and equation (5) cor- 
responds to the heat equation. We study, here, only 
the neutral stationary state. This specific case is inde- 
pendent from the Prandtl number as is well known 
from standard studies [I, 4, 71. It is evident that any 
analysis of a more general character should show the 
influence of this parameter as it will intervene at least 
on the frequency of the oscillatory motion. Also, we 
limit ourselves to the onset of steady convection, we 
are not yet considering finite motion. This is why we 
neglect also the surface deformation. The right-hand 
side of equation (5) is due to the convective trans- 
port of heat whose unperturbed profile is given by 
equation (1). 

The dimensionless number Ma defined by cqua- 
tion (7d) is the equivalent of a Reynolds number. It 
expresses thus that motion will be induced by surface 
forces and opposed by viscous and thermal dissipa- 
tion. The Biot number B characterizes the heat ex- 
change at the discontinuous liquid-gas interface. 
From equations (4), (7a) and (7b), one finds directly 
the explicit expression for f(S). Up to an unknown 
constant factor F, it is given by 

--at cash a[ . (8) 

It is the same solution as the one given by Pearson, 
for an undefotmable surface. This is a consequence of 
the mi~rogravity en~ronment which eliminates any 
coupling between the Navier-Stokes momentum bal- 
ance and heat since there is no external volumic force 
linked to heat ; due to the experimental working con- 
ditions, the onset of motion is driven solely by the 
free surface longitudinal variations. One introduces 
the above expression for f(r) in equation (5) which 
becomes thus a second order inhomogeneous ordi- 
nary differential equation with constant coefficients. 
In the appendix, we give the explicit solution for the 
thermally conducting rigid wall (g(0) = 0) which cor- 
responds to our experimental situation. 

We have obtained the complete expressions of the 
solutions for both ,f(f) and g(t). Calculating the two 
components of the mode at 5 = 1, we use the boun- 
dary condition (7~) to derive the compatibility con- 
dition of this problem, so that every physical pertur- 
bation will be defined, once the value of the amplitude 
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FIG. 3. Critical Marangoni number vs Biot number for the 
case : curve A, a: = 1; curve B, a: = 1; curve C, a: = 1 
(Pearson’s theory) ; curve D, experimental conditions at the 
onset (a: = 0.6, a: = 0, af = 0.34). The experimental value 

is noted as A. 

r is given. We obtain the functional form of Ma, as a 
function of the Biot number B, the wave number tl 
and any two of the three parameters a,*. Indeed there 
exists a linear dependency between those three par- 
ameters since by definition, one has 

a:-a:+a: = 1 (9) 

so that the whole discussion is now on the function 

Mu = Mu(a, B, [a;, ic (1,3)]). (10) 

Thus, for each set of the control parameters B and 
a,? (i = 1, 2, 3) we derive from equation (lo), a curve 
giving the Marangoni number, Mu, in terms of the 
wave number CL whose minimal value is the critical 
Marangoni number Mu,, which is the most interesting 
quantity of our problem. For example this numerical 
procedure gives us back the Pearson value since for 
at = I we obtained Mu, = 79.6 with c( = 2.0 for a 
thermally conducting rigid wall. From a comparison 
of numerical simulations, we extract also the Mu, as 
a function of the Biot number at al = - 1 and al; = 1, 
which we compare with the experimental values of the 
Biot and the Marangoni numbers (see Fig. 3). 

Let us consider the linear temperature drop whose 
limiting values across the liquid layer are equal to 
the ones being observed on the two boundaries. This 
situation is depicted with the curve A in Fig. 4. For 
the same temperature drop AT, our cubic profile (see 
curve C, Fig. 4) still gives us a certain freedom on the 
choice of a* coefficients, and thus on the shape of the 
profile. As the curvature, in our experiment as well as 
in the one performed by Grodzka and Bannister [8- 
1 I] is positive, the temperature at the same height in 
the liquid is always smaller for a cubic profile than for 
a linear one. Thus, to reach a convective regime one 
must provide a stronger cause for the instability and 
Mu, will increase with a: or a:. To illustrate this, let 
us change at, at the same temperature drop AT. This 
amounts to varying the value of the reference tem- 
perature gradient at the free surface and implies to 

0 

T 
OS To*+ AT 

FIG. 4. Comparison between various profiles. Curve A, 
linear, the AT across the layer is equal to the one of curve 
C; curve B, linear, the gradient of T at the free surface is 

equal to the one of curve C ; curve C, cubic profile. 

study another Marangoni curve as the right-hand side 
of equation (10) shows. 

Another point of view is that we consider the same 

value as Pearson for the gradient of temperature mea- 
sured at the free liquid-gas interface, which is kept 
at one temperature (see curve B, Fig. 4). Then, an 
equivalent approach would be to define as the total 
linear temperature drop AT 

(11) 

so that one has 

(12) 

This means physically that, in all cases for which a: 
is smaller than one, the temperature at the rigid solid- 
liquid surface should be higher than the one which 
Pearson would consider since the tangent at the free 
surface leaves the cubic profile at its right (see Fig. 4). 
At the same height in the liquid, we are now above 
the linear temperature profile given by equation 
(11). Now, let us compare two linear profiles, the first 
corresponding to our actual AT and the other for 
ATPeilrSOnr we have since uf is smaller than 1. But this 
is a fortiori even more true 

4 

m 
. 3 

FIG. 5. Sketch of the cell module launched in TEXUS 21. 
The temperature sensors arc noted respectively as 1, 2, 3, 4. 
Temperature thermistor 2 is located in the silicone oil and 

sensors 3 and 4 are in the helium layer. 
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for the cubic profile corresponding to AT, for which 
the marginal state is reached at an even larger Maran- 
goni number, as we discussed above. As equation (10) 
which defines the onset of convective instability is 
a dimensionless equation in terms of dimensionless 
parameters, both interpretations are valid. Moreover, 
it is natural to get again Pearson results from equation 
(lo), since for a constant temperature gradient across 
the whole liquid layer there is only one Marangoni 
number. It corresponds to 

Ma = Ma(cr,B,a: = 1,~: = af = 0). (13) 

3. EXPERIMENTAL DESCRlPTlON AND 

RESULTS 

Our main goal is to develop the study of the Maran- 
goni instability under microgravity conditions in a 
well defined experiment. This means that, we have to 
satisfy a certain number of criteria which are specific 
of the spacecraft working conditions and amenities. 
The main points of concern are linked to the available 
limited mass, energy and volume budget in a stock- 
piled sounding rocket and to the finite time during 
which the desired microgravity level can be sustained. 
Thus, we must design a way to control and record the 
temperature at an exactly defined interface, inside a 
containing vessel whose shape and physico-chemical 
own properties should not intervene to obscure the 
interpretation of the data. 

Also, one difficulty encountered in microgravity 
research applied to fluid hydrodynamics, is to obtain a 
well-defined liquid-gas interface shape : in our present 
case a large flat interface. In previous expe~ments 
[S-l I], the free interface showed a curvature, thus 
introducing thermal gradients along the surface. This 
experimental feature was casting some very strong 
doubts on the physical interpretation of the quan- 
titative values. 

In short, we want to measure the critical Marangoni 
number at the onset of convection but we are not 
allowed to follow the transition from pure heat con- 
duction to thermal convection under conditions which 
correspond to a quasi steady state. The experimental 
working conditions exert a heavy toll. One must find 
a compromise between all these ex~rimentally linked 
contingencies. One is led to develop specific micro- 
gravity relevant experimental techniques [13, IS]. 

Thus, we considered a rectangular cell whose cross 
section was 40 x 60 mm. Its depth was 10 mm out of 
which the first 5 mm were filled with a silicone oil 200 
DC whose characteristics are given in Table I. The 
depth of the silicone layer has been carefully selected. 
The relaxation time of the silicone oil layer d*/K is 
about 300 s. This is of the order of magnitude of the 
total span of time during which the sounding rocket 
is in a microgravity regime. Helium gas filled the other 

5 mm deep half cell. The side walls were in Lexan 
whose thermal characteristics are close to those of the 
silicone oil to eliminate as best as possible lateral 
thermal gradients which could induce motions by 
themselves. 

The hot rigid wall beneath the oil is a copper b&k, 
which is heated right after the liquid injection in the 
cell. The copper high thermal conductivity ensures 
isothermal conditions but the block is sufficiently thin 
to allow a quick heating. The other wall, above the 
gaseous phase, is colder than the copper one. It is a 
sapphire window giving the opportunity to combine 
its thermal properties and its optical transparency to 
visualize the onset of convection (see Table 2). The 
silicone oil is seeded with aluminium flakes whose 
reflectivity will outline the convective pattern. 

The heat conductivities of the silicone oil and of the 
helium gas are very near one to another, but their heat 
diffusivities are in a ratio that largely exceeds IO3 (see 
Table 1). The helium large thermal diffusivity and 
conductivity make sure that the temperature differ- 
ence, between the liquid interface and the sapphire 
wall, leaves a reasonable temperature drop across the 
entire system and that the relaxation time inside the 
gaseous phase is sufficiently short. The choice of 
helium has thus a double advantage. It is reasonable 
to assume a linear temperature gradient in the gaseous 
phase. Furthermore, since there is no heat accumu- 
lation at the interface, the temperature and its normal 
gradient are continuous along the border separating 
the oil and the helium. 

To follow the heating process, we placed four tem- 
perature thermistors in the system. The first one is 
located in the copper block which is a thermally good 
conductor. The second and third ones are just below 
and above the free silicone oil/helium interface. The 
last one is below the sapphire interface, The sensors 
have been selected to be as thin as possible to avoid 
detrimental effects induced by their shape so that the 
wires have a radius of 0.025 mm and their heads have 
a 0.4 mm diameter. They allow the measurement of 
the heat flux crossing both the liquid and the gas 
layers. 

We adapted the Schmidt-Milverton plotting tech- 
nique [ 161 to detect the onset of the convective insta- 
bility and to determine the critical Marangoni 
number. At the critical point, the slope is changing, 
due to the appearance of a new mechanism in heat 
transport. The temperature drop in the oil as a func- 
tion of the temperature drop in the gas are two differ- 
ent linear functions (in a first approximation). The 
interaction of the two straight lines defines accurately 
the onset of convective motion, 

The temperature drops related to the onset of con- 
vection are 

AToi, = 8.9 Kk0.2 K; ATH,,i,, = 6.1 K-&0.2 K 

(14) 

across each of the corresponding 5 mm thick layers 
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Table 1. Properties of liquids and gas used 

Propertics Silicone oil 200 DC Helium 

Dynamic viscosity, p (kg rn. ’ s ‘) 14.5x IO 1 
Density, p (kg m ‘) 965 17.8x lo-’ 
Thermal conductivity, li (W K ’ m- ‘) t5..5x10-~ 15.2 X lo- 2 
Surface tension, S (N m ‘) 21x10 7 _.. 
Temperature dependence of S, e (N rn- ’ K _ ’ f -5x lo-’ 
Thermal diffusivity, K (m’ s- ‘) l1.3x1o-x x4.5x 10-j 

Table 2. Properties of materials used 

Properties Copper Lexan Sapphire 

Thermal conductivity, 399 0.19 10 
k(WK-‘m-‘) 

Thermal diffusivity, 11.5x10-’ 1.3x10.-’ 20.9x10-’ 
K (m’ s- ‘) 

tions (7d) and (14) give us the experimental value of 
the critical Marangoni number 

Mu, = 144+3. 

To compare with a theoretical value, we will first 
evaluate the right-hand side of equation (IO). We 
derive from a least square fitting the polynom which 
is the nearest to the temperature profile obtained, with 
the help of a numerical simulation (see Fig. 2), from 
the heat sensors data. We observe that a cubic 
approximation is a suitable choice which justifies 
equation (I) and as a consequence the analytical 
development giving rise to equation (IO). As the ther- 
mal gradient is constant in the helium phase and as 
the heat fluxes are equal along the free interface, we 
obtain, from equation (14), the linear term and the 
values of the other coefficients a, of the polynomial 
approximation given by equation (1) for the silicone 
oil layer and obtain 

u, = 1173Km-‘; a2 =OKmm2; 

a3 = 2.42x 10’ K mm ‘. (15) 

~.:.p!:j.II.~\!‘F= . 

41 
4 5 6 7 8 

AT GAS(K) 

FIG. 6. Schmidt-Milverton plot showing the temperature 
drop in oil vs temperature drop in the gas layer. The break 

in the curve gives the AT at the onset of convection. 

Table 3. Values of the critical Maran- 
goni numbers for the present theory, 
for the Pearson work and deduced from 
the experimental data, at different 

values of the Biot number Bi 

0.6 - 130.5 101.8 
0.8 144&3 139.9 109.0 
1.1 ~ 153.7 119.6 

To achieve our goal, we also need to evaluate the 
Biot number tz = qd/k at T = To,, and we will replace 
~7 by a finite difference with respect to time, again 
playing on the assumption of a linear heat profile in 
the helium phase 

(16) 

071 

where all the quantities are measured at time tl and 
t2 separated by 10 s. From this, we find a Biot number 
varying between 0.6 and 1.1 with a mean value of 0.8. 
Introducing those values in equation (lo), we obtain 
finally a critical ~arangoni number equal to 139.9 
(see Table 3). It should be also compared to the same 
quantity deduced from Pearson’s model which gives 
us Mu, = 109 for B = 0.8. We notice thus a great 
improvement as our value is in the error range of 
the experimental one while the one deduced from 
Pearson’s model is much too low (see Table 3). 

4. CONCLUSIONS 

Our justification of the present research is to explain 
why the critical Marangoni number measured at the 
onset of convection in previous weightlessness exper- 
iments is much too high. One of the mean specific 
experimental features overlooked in the Apollo mis- 
sion [8-111 was to control the liquid-gas interface 
shape during the whole of the available time and to 
carefully determine the onset of convective instability 
induced by variation of surface tension only for a 
transient conducting profile of temperature. We suc- 
ceeded in mastering one very important technical 
difficulty: we make it possible to fill the half cell in 
weightlessness, to create and maintain a large flat 
liquid-gas interface in the timespan during which a 
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microgravity regime exists. We performed a Maran- 

goni-BCnard experiment in the TEXUS 21 sounding 
rocket experiment launched in Kiruna on 21 May 
1989 and followed the onset of convection in a liquid 
layer of well defined thermal properties, subject to a 
transverse non-uniform thermal gradient, and whose 
containing vessel has well known thermophysical, 
wetting and geometrical characteristics. This was an 
important preliminary condition to be fulfilled to suc- 
cessfully perform a microgravity experiment during 
the Spacelab D2 Mission in 1992. 

Then, taking those experimental conditions into 
consideration, we reformulate the linear stability 
problem for thermocapillary convection in weight- 
lessness, induced by a transient temperature profile. 
It is thus different from the linear one studied by 
Pearson and we assimilated it to a quasi steady state 
since its relaxation time is of the order of magnitude 
of the microgravity lifetime. The conducting tem- 
perature reference profile was evaluated by a cubic 
polynomial which has a continuously varying cur- 
vature with height. 

We report in this paper the critical Marangoni num- 
ber at the onset of convection induced by such a quasi 
steady temperature profile and reach an excellent 
agreement with the experimental results. This illus- 
trates an obvious methodological point: a theory 
which should be applied within the framework of 
space facilities has to incorporate the specific micro- 
gravity experimental conditions at hand and be com- 
pared to experimental results. 
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APPENDIX 

We have to solve 

(D’-x%(0 =f(5)[a:+2a:(5-1)+3a:(T-l)*] 

where f(t) is given by equation (8). The above equation 
is a non-homogeneous second order ordinary differential 
equation whose inhomogeneous part is the sum of products 
of polynoms by exponentials, these last being solution of the 
homogeneous part. Applying a classical method, we obtain 
explicitly g(t). From equation (7c), we deduce immediately 
the analytical value of the Marangoni parameter. As the 
copper wall is a thermal conductor we will consider only 
g(0) = 0 and obtain 

g(5) = r[(G,54+G~53+GSrZ+G75+G9) sinha 

+(G254+G4r3G6r2+Gs5)cosha5] 

where 

G, = -ia: 

G, = ;a: 
a cash a-sinh a 

sinh a 

G, = &(2uf-ba:)a-l?G,] 

G, = & 3af-12GI(2a:-6a:) 
a cash a - sinh a 

sinh a I 

GS = $-a(a:+3a:-2a:)-6Gd] 

G, = & (a:+3a:-2a:) 
a cash a - sinh a 

sinh a 

+2a:-6a:-6G, 1 
G’=_; 
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G, = &:+~a:-2af-X5) 
G9(ct cash CI + B sinh a) 

= -[(4G, +aG,+3G,+aG.,+2G,+nG6 

+G,+rG,)sinhr+(aG,+4G2+rG, 

+3G,+ctG,+2G,+aG,+G,)cosha 

-B(G,+G,+G,+G,) sinhu 

-B(G2+G,+G,+G,)cosha]. 


